Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

N,N'-Bis(4-chlorobenzylidene)propane-1,2-diamine

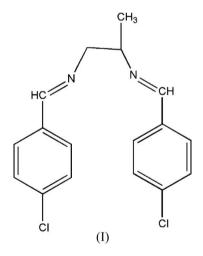
Shu-Ping Yang, a* Li-Jun Han, b Da-Qi Wang and Hai-Tao Xia

^aDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, ^bDepartment of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, and ^cCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China

Correspondence e-mail: yangshuping@hhit.edu.cn

Key indicators

Single-crystal X-ray study $T=298~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.004~\mathrm{\mathring{A}}$ R factor = 0.045 wR factor = 0.115 Data-to-parameter ratio = 14.6


For details of how these key indicators were automatically derived from the article, see http://iournals.iucr.org/e.

The title compound, $C_{17}H_{16}Cl_2N_2$, adopts a 'vault' conformation. The molecules are linked by a pair of $C-H\cdots N$ hydrogen bonds into a centrosymmetric dimer with an $R_2^2(18)$ ring. These dimers are linked by a weak centrosymmetric $\pi-\pi$ interaction into a chain along the [001] direction, and these chains are connected by van der Waals interactions, resulting in a three-dimensional network structure.

Received 20 November 2006 Accepted 30 November 2006

Comment

Schiff bases are ligands of significant importance because they are potentially capable of forming stable complexes with metal ions (Johnson *et al.*, 1996; Alizadeh *et al.*, 1999), and some diamine Schiff bases have shown good anti-inflammatory activity and good analgesic activity (Sondhi *et al.*, 2006). The crystal structures of some diamine Schiff bases have been reported (Xiao & Wang, 2006; Sun *et al.*, 2004). Here, we report the crystal structure of the title diamine Schiff base, (I).

Compound (I) (Fig.1), adopts a 'vault' conformation, with the two 4-chlorobenzyl rings located on the same side of the molecule. The two benzene rings enclose a dihedral angle of $80.77~(8)^{\circ}$.

In the crystal structure of (I), the molecules are linked by a pair of C $-H\cdots N$ hydrogen bonds into a centrosymmetric dimer with an $R_2^2(18)$ ring (Bernstein *et al.*, 1995), centred at $(\frac{1}{2},\frac{1}{2},1)$ (Fig. 2 and Table 1). These dimers are then linked by a weak centrosymmetric $\pi-\pi$ interaction into a chain along the [001] direction, centred at $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ (Fig. 3) $[Cg1\cdots Cg1^{ii}=4.163$ Å; Cg1 is the centroid of ring C2-C7; symmetry code: (ii) 1-x, 1-y, 1-z]. These chains are connected by van der Waals interactions, resulting in a three-dimensional network structure.

© 2007 International Union of Crystallography All rights reserved

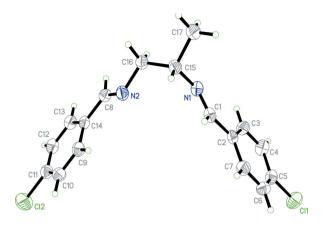
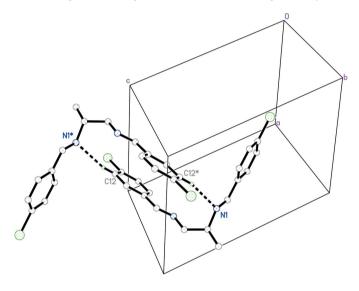
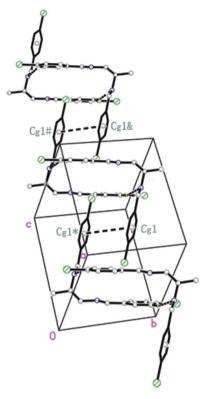



Figure 1
The molecular structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.


Figure 2 Part of the crystal structure of (I), showing the formation of the centrosymmetric hydrogen-bonded $R_2^2(18)$ dimer centred at $(\frac{1}{2}, \frac{1}{2}, 1)$. For clarity, H atoms have been omitted. [Symmetry code: (*) 1 - x, 1 - y, 2 - z]. Dashed lines indicate hydrogen bonds.

Experimental

A mixture of propane-1,2-diamine (1.48 g, 20 mmol) and 4-chlorobenzaldehyde (1.40 g, 10 mmol) was refluxed for about 2 h in ethanol (20 ml), and then the mixture was cooled and the products were filtered off, washed with methanol and dried. Colourless crystals of (I) suitable for X-ray structure analysis were obtained by recrystallizing the crude product from ethanol (m.p. 350–352 K).

Crystal data

$C_{17}H_{16}Cl_2N_2$	$V = 806.8 (5) \text{ Å}^3$
$M_r = 319.22$	Z = 2
Triclinic, $P\overline{1}$	$D_x = 1.314 \text{ Mg m}^{-3}$
a = 7.731 (3) Å	Mo $K\alpha$ radiation
b = 9.301 (3) Å	$\mu = 0.40 \text{ mm}^{-1}$
c = 11.970 (3) Å	T = 298 (2) K
$\alpha = 81.031 \ (3)^{\circ}$	Block, colourless
$\beta = 72.354 (2)^{\circ}$	$0.58 \times 0.52 \times 0.19 \text{ mm}$
$\gamma = 82.339 (3)^{\circ}$	

Figure 3 A view of part of the crystal structure of (I), showing the formation of a π -stacked chain of hydrogen-bonded dimers along the [001] direction. For clarity, H atoms not involved in the motif shown have been omitted. [Symmetry codes: (*) 1-x, 1-y, 1-z; (#) 1-x, 1-y, 2-z; (&) x, y, 1+z].

Data collection

Siemens SMART 1000 CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.803$, $T_{\max} = 0.928$

4174 measured reflections 2794 independent reflections 1704 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.020$ $\theta_{\rm max} = 25.0^{\circ}$

Refinement

Refinement on F^2

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.115$ S = 1.062794 reflections 191 parameters H-atom parameters constrained
$$\begin{split} w &= 1/[\sigma^2(F_{\rm o}^2) + (0.0349P)^2 \\ &+ 0.2563P] \\ \text{where } P &= (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} &< 0.001 \\ \Delta\rho_{\rm max} &= 0.22 \text{ e Å}^{-3} \\ \Delta\rho_{\rm min} &= -0.17 \text{ e Å}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$	
C12-H12···N1 ⁱ	0.93	2.72	3.613 (4)	161	
Symmetry code: (i) $-x + 1, -y + 1, -z + 2$.					

All H atoms were positioned geometrically and refined as riding on their parent atoms, with C—H = 0.96 Å and $U_{\rm iso}({\rm H})$ = 1.5 $U_{\rm eq}({\rm C})$ for methyl H atoms, and C—H = 0.93–0.98 Å and $U_{\rm iso}({\rm H})$ = 1.2 $U_{\rm eq}({\rm C})$ for all other H atoms.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997a); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997a); molecular graphics: *SHELXTL* (Sheldrick, 1997b); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the financial support of the Huaihai Institute of Technology Science Foundation.

References

Alizadeh, N., Ershad, S., Naeimi, H., Sharghi, H. & Shamsipur, M. (1999). Pol. J. Chem. 73, 915–925.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). *Angew. Chem. Int. Ed. Engl.* **34**, 1555–1573.
- Johnson, C. P., Atwood, J. L., Steed, J. W., Bauer, C. B. & Rogers, R. D. (1996). *Inorg. Chem.* 35, 2602–2610.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758–3765.
- Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707–o1708.
- Xiao, L.-J. & Wang, D.-Q. (2006). Acta Cryst. E62, o724-o725.